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1. INTRODUCTION:

The objective of this three year program is to compute the center

frequency transmission line parameters (namely DELTERV and DELTERZ, Ref. 1)

for electrodes (including buried electrodes) in a finite length single or

double electrode transducer array. These parameters are to be calculated

from electrode geometry and material constants taking mass and elastic loading,

stored energy, piezoelectric loading and external circuits into effect.

During the first year a full field theory was developed to calculate

all of the effects simultaneously. During the present year a different approach

was adopted in order to obtain transmission line model parameters that are

easily expressed in term of electrode material and geometry. The scattering

process was separated into three categories and each was treated individually

using perturbation theory:

*First order Mass and Elastic loading

*Stored Energy Effects (Second order Mass and Elastic loading)

*Piezoelectric loading.

These were first analysed for a single electrode in an infinite array.

Section 2 describes the first-order mass and elastic loading analysis and

Section 3 describes the analysis of acoustic stored energy scattering. The

piezoelectric scattering is analysed in Section 4. This analysis, however,

does not allow for interconnections between electrodes and so is not used

directly for interdigital transducers. In Section 5 an analytical expression

for the frequency response of a single electrode in an infinite grounded array

is determined. The results of Sections 4 and 5 have been combined to get a

frequency dependent scatter matrix for a single electrode in an infinite array

excited with arbitrary voltages on the electrodes. This will be described in

the final report. The infinite array analysis for the contract requires the



scattering parameters to be evaluated only at harmonies; however, the

finite array analysis presently under development requires the scattering

parameters to be evaluated at all frequencies.

All of these scattering contributions are combined to provide a

composite mixed unit scatter matrix description for the electrode. The des-

cription is left in the scatter matrix form because the transmission line

model for odd and even harmonic scattering is different. This scatter matrix

is easily converted to the DELTERV and DELTERZ for the odd harmonic trans-

mission line parameters using the equations derived in Appendix I.

2



2. FIRST ORDER ELASTIC LOADING:

! A. Introducti,.,,:

The problem of surface wave reflection at thin strip overlays

occurs frequently in signal processing devices. Grooved array reflectors

employ strip overlays of the same material as the substrate, while metallic

transducers incorporate strips of a material different from the substrate.

In his book, Auld ( 2 ) has described a method for determining the first-order

reflection coefficient of a very thin strip overlay. In this method the

normal and tangential stresses, Ts  Ts Ts  (Fig. lb), generated at thexy' yy' zy

interface by the overlay are used as source terms in the normal-mode

equation for the generation of the reflected wave. The results, however,

when applied to practical cases such as grooves in ST-Z quartz or aluminum

on ST-X quartz, yield a value of the reflection coefficient that is too

high compared to experimental values.

In Ref.2 , the interface stresses under the overlay T
s ) Ts

Ts are assumed to be the same as those due to a uniform overlay extending
zy

all along the propagation path. In this section it is shown from the first

order equations that, in addition to this uniform component, a pair of delta

function shear stresses is generated at the edges of the strip due to its

finite extent. The existence of these stresses has also been shown recently

by a rigorous perturbation scheme. (8 ) By incorporating the additional source

terms into the normal mode equations, the calculated reflection coefficients

for grooves in ST-X quartz and for aluminum on ST-X quartz are found to be

in close agreement with observed experimental values. The reflection coeffi-

cient calculated for grooves in Y-Z lithium niobate also agrees with the

experimental value; however, in this paper any piezoelectric effect due to

the overlay is neglected. This effect is negligible in quartz but not

necessarily so in lithium niobate.
3
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Fig. 1. (a) Incident Rayleigh wave on thin strip overlay.

(b) Generation of reflected wave by Stresses generated at strip-
substrate interface.
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The present formulation thus affords a simple technique for com-

puting the first-order reflection coefficient directly from material para-

meters.

B. Formulation:

The incident surface wave (Fig. la) is assumed to travel in the

positive z-direction in a half-space with a free surface so that the surface

stresses T, Tyy T are zero. The wave is uniform in the x-directionxy ' zy

and travels with a velocity c such that the wave-number is given by
5

= W/c

where w is the radian frequency. A thin strip of height h extends along

a a
the propagation path from z = - to z = + 2 (Fig. la). Due to the

presence of the strip, there are interface stresses Ts I Ts y T (Fig. lb)
xy yy' zy

which are the source terms in the normal mode equations ( 2 ) describing the

change in the incident forward wave and the growth of a reverse wave.

+
Let A and A be the amplitudes of the forward and reverse waves.

The surface wave in general has three particle velocity components vx, Vy,

v whose values at the surface for the forward wave are written as,
z

vX = A + (v + e - j ~z )  (1a)

x x

v _- A+ (v+ e- j o z )  (lb)

Y y

vz = A + (v + e- joz)  (lc)
z

R R R
The particle velocities for the reverse wave v, vy, vR are the

negative complex conjugates of those of the forward 
wave.(3 )

vR = --A (v+ e ) (2a)
x x

5



R = - (v+ e-j 5z)* (2b)

y y

R A-(v+ e-j  )  (2c)z z

The normal mode equations are:

I dA+ T T + vTs + * (3)

A+ dz IA+ 2 4p xy y yy z zya

dA I _ [vR*Ts + R* Ts +v R* TIs  (4)
A- dz JA-12 xy vy yy z Zy]

where P is the total power per unit beamwidth in a unit amplitude surfacea

wave.

Equation (3) describes the change in velocity of the forward wave.

The first order theory to be described here yields the same velocity change

as in Ref. 2; so this is not discussed further in this paper. Equation (4)

describes the growth of the reflected wave. Using Equations (1) and (2),

it is written as,

1 d _ _s T ) T j
Adz 1Y v .
zx y z (5)

where + 2

= (6a)
a

+ = (6b)
2 4P

a

(+)2

= z (6c)
3 4P

a

a a+
Integrating Equation (4) from z = - - to + - and assuming A to be constant

2 2
over this region we obtain the reflection coefficient, r.

6



r - z I +zI +z1 (7)
A- + lx 21y 3 z

where,

e= e-j20z dz (8a)
a x
2

I (-ME) 2 e dz (8b)
Y a y

_2

a

= e - j 2 0z dz 
(8c)

a z

2

C. Interface Stresses Generated by Strip Loading:

To obtain Ix, I y, and Iz, we have to determine the induced stresses

Ty T , and T at the interface between the strip and the substrate. In

the first-order approximation, the particle velocities throughout the strip

can be assumed to be the same as those at the surface of the substrate due

to the incident wave. (2 )  The interface stresses are then readily determined

by considering the forces acting on a differential element dx, z of the

strip of height h. From the x-directed forces (Fig. 2a),

T jWp'hvx - h.- xz (9a)

From the y-directed forces (Fig. 2b),

T = jwp'hv • (9b)yy y

From the z-directed forces (Fig. 2c),

T jwp'hv - h. TZZ (90
zy z

where p' is the mass-density of the strip.

7
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Fig. 2. First-order forces acting on a differential element of the strip in

(a) x-direction

(b) y-direction

(c) z-direction.
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T' has been neglected in Equation (9b) because its first order
yz

value is zero in the strip. The primes are used on T' T' and T' toXZ yz' ZZ

denote that these are fields in the strip rather than in the substrate.

These results have also been derived in Ref. 2 using a rigorous Taylor's

series expansion for the fields in the strip.

In Equations (9a) and (9c) T' and T' are the stresses in thexz zz

strip which is assumed to have the same particle velocities v and v as

the substrate. We may write,

T' I at v (10a)
xz W x X

V ot' v (10b)
zz W Z z

where or' and cx' are constants with the dimensions of stiffness 
(nt/m2).

x z

These are effective stiffness coefficients that depend on the material of

the strip. In a strip made of an isotropic material with Lame' constants

X' and p', or', at' are readily obtained from the plane strain equations
x z

assuming the first order T' to be zero.
yy

cx = &' (Ila)

z = 4i,'(X' + ) (lib)
X' + 2pt

For an anisotropic strip equations similar to (11) are derived but are more

complicated.(2) However, for an anisotropic strip of the same material as

the substrate, T' and T' are the same as the surface values of theseZz zx

quantities in the incident unperturbed surface wave.

T' = T (12a)
Zz Zz

T' = T (12b)
xz xz

where T and T are the surface stress fields ot the incident surface wave.
zz Xz

9



It will be noticed that the derivatives of T' and T' with respect
xz zz

to z appear in Equations (9a) and (9c). These stresses have a uniform value

(multiplied by the factor exp[-j~z]) over the entire length of the strip.
a a

However, at the end faces (z = - - and z = +a-) these stresses must be zero.

This leads to the excitation of evanescent modes around each edge which give

2 (6)
rise to the second order (_ (Oh) ) stored energy effects. In the present

first-order approximation we will neglect these evanescent modes and assume

that the stresses T' and T' remain uniform over the length of the stripxz zz

and abruptly go to zero at the edges. Because of this abrupt change, the

derivative terms in Equations (9a) and (9c) give rise to delta function

stresses at the two edges. We thus have from Equations (9) and (10),

T '
= [pc s - + - 6(z + ) 6(z - ) (13a)

x s

T 
s

_ZX iL91) cs9 (13b)

y S

= pc z + 6(z + -) 6(z - (13c)
-~Z j(h) [

z s

where c = W/O is the velocity of the surface wave.
s

Fig. 3 shows the spatial distribution of the interface stresses.

The delta function components of Ts  and Ts  at the edges of the strip were
xy zy

not included in Ref. 1. Inserting the computed stresses from Equations (13)

into Equations (8) we get,

j ( + ) sina (14a)

s
I 1( h (p'c2) sin~a (14b)
y C s

10



Iz = (p'c s + 0') sin0a14c)

Comparing Equations (13) and (14), it will be noticed that the effect of

adding the delta function terms is to change the sign of ci and a' in
x z

Equations (13a) and (13c). Physically, this means a change in the sign of

the component of reflectiondie to stiffness since ot', o' represent stiffness
z

while p' represents mass.

2.,,

J3~

- I2- aix)

-

°I2
(b)

Fig. 3. Spatial distribution of (a) x-drected, (b) y-directed, nd

(c) z-drected interface stresses.

ie Tv
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Combining Equations (14) with Equation (7), we have,

r = jsin~a . (Oh) [p'2 (1 2 3) + (c + z3) (15)s Wu w

D. Application to Specific Cases:

In this section Equation (15) is applied to obtain the first-order

reflection coefficients per strip for: (1) aluminum on ST-X quartz and (2)

Grooves in ST-X quartz. In each case the computed value closely matches

the experimental value reported in Ref. 4.

The values of relevant field quantities at the surface for the

unperturbed surface wave in ST-X quartz are given below for a total power

per unit beamwidth P = 012 w Watts/m. These values were computed from thea

field equations using the method in Ref. 5.

v = .40 w < -900 m./Sec.

+

v 4.24 w < +90' m./Sec.
Y

+
v = 2.79 w < 0 m./Sec.

Z

T = 2.42x1011 < 1800 nt./m?zz

10 <0
T = 2.66x1 <O 900 nt./m 2
zx

The mass-density and surface wave velocity for quartz are,

p = 2651 kg/m.

c = 3158.5 m./Sec.
s

We thus have,

Zl -14 2
- -4xlO1 m./nt.

12



z-2 12 2
I_ _ -4.5xi0 m./nt.

z 3 _-12 2
= +1.95x0 -  m. /nt.

Using these values in Equation (15) we get,

r = j(sinpa) . 43 - + .0066 x 2 + .32z2 (16)
PCs  PC s

This equation gives the reflection coefficient of a strip of any material

on ST-X quartz. The strip material is characterized by p', a', and &, px Z

being the mass-density of quartz.

(1) Aluminum on ST-X quartz:

Aluminum has Lame' constants ', j' and mass-density p' equal to,

10 2
= 6.1xlO nt./m.

2.5xi0 I0 nt m

p' = 2695 kg./m.

Using Equations (lla) and (lib),

a' = 7.75xl01 0 nt m

z

t' = 2.50xi010 nt m

x

We thus have,

p'/p = 1.017

'/PC 2 = 0.945x s

, 2
zpCs 2= 2.930

13



Hence from Equation (16),

h
r = j(sin a) . (.507 h)x

For a reflector array at its fundamental stopband with equal electrode and

h
gap regions, sin~a = 1, so that the reflectivity per strip is .507

(2) Grooves in ST-X quartz:

In this case the overlay is of the same material as the substrate;

as discussed in Section C, T' and T' in the strip may be assumed to be
Zz zx

the same as their ,urface values for the unperturbed waves which are listed

at the beginning of this section. Using these values,

of T 8.67xi010 nt./m.

z

off= - = 6.65xi0 I0 nt./m.
x v

x

We thus have,

P'/P = 1

2
&'/pc = 2.514

x s
2

1'/PC 2
= 3.278

z s

Hence from Equation (16),

h
r = j(sin a) (.636 h)

A similar calculation with Y-Z lithium niobate as the substrate material

yields,

r j(sin a) . L- .317 L+ .272 z (17)pc
1 s

14



where p' and a' describe the strip material and p is the mass-density of
z

lithium niobate (pc 2 = 5.72x10 nt./m.). a' does not appear in this equation
s x

because v = 0 for a surface in Y-Z lithium niobate. For grooves in Y-Z
x

lithium niobate we have,

f, T zz 2.092x10 11 nt./m 2

z V
z

so that,

p'I/p = 1

2
2 = 3.657

Equation (14) then yields,

h
r = j(sinfa) (.678 h)

This result too agrees with experimental data. However, as noted earlier,

we have neglected the electrical term in the normal mode equation.

E. Conclusions:

In this section the first-order reflection coefficient of strip

overlays on anisotropic substrates is obtained from the well-known normal mode

theory. An analytical expression for the reflection coefficient is derived

for arbitrary anisotropic strip and substrate materials. The computed values

agree well with experimental values for grooves in ST-X quartz and Y-Z

lithium niobate and for aluminum on ST-X quartz.

15



3. STORED ENERGY SCATTE RING:

A. Introduction:

The propagation of surface acoustic waves through a periodic array

of grooves or thin strip overlays has been modeled (6 ) as a repetitively mis-

matched transmission line with reactive energy storage elements (jB) at each

discontinuity (Fig. 4). The mismatch parameter aZ/Z has been related to the

elastic constants of the substrate and strip material using various theore-

tical approaches. (7 ,8 ,9 ) However, no theoretical analysis relating the

energy storage elements to material constants has yet been described.

['he energy storage element (jB) is physically attributed to the

2excitation of evanescent modes. It is a quadratic effect of order - (h/X)

where h is the height of the strips; this is in contrast to AZ/Z which is a

linear effect of order - (h/X). This energy storage produces two specific

effects on the dispersion curve which have been verified experimentally: (i)

it leads to a shift in the center of the fundamental stop-band, and (2) it

predicts a stop-band at the second harmonic.

in this section we will describe a model using a first-order pertur-

bation analysis of the strip overlay that predicts these effects and shows

their physical origin. Piezoelectric effects are neglected in this paper;

only mechanical effects are considered. However, anisotropy is accounted

for. The results for a few practical cases involving aluminum electrodes

on ST-X quartz and grooves in ST-X quartz are in fair agreement with re-

ported experimental values.

B. Secular Equation:

The field quantities for a wave propagating in a periodic structure

(10)
satisfy Floquet's Theorem. The particle displacements and the stresses at

16
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the interface between the layer of strips and the substrate may by

written as, +C

U. (n exp.j (n Z (18a)

n= -co

(n) (n)
Ti i. exp(-jO z) (18b)

_ z)
n=

where, (n) = + n.2Tt/p (19)

p being the period of the strip array. Here T. represents the stress at the

interface. The second subscript is implied to be y and is dropped for con-
(n) th

venience. 0 is the surface wave wavenumber and 0 represents the n

space harmonic.

The relationship between T and U required by the periodic array of

strips is determined using a first-order perturbation analysis; this analysis

(11)
is basically similar to that described by Auld in his book with a modifi-

cation to handle edge effects. (9 ) Using this analysis, a matrix [L], charac-

teristic of the strip material and geometry (Fig. 5), is evaluated in

Appendix 11 such that,

+w Z

T = (0h) . .. (20a)
n= J ' m = - O, CO

where h is the height of the strips. A first-order perturbation analysis

yields stresses that depend linearly on (5h). The strip array being periodic

couples together different space harmonics. A particle displacement at one

spatial harmonic, n excites stresses at another spatial harmonic, m.

This is in contrast to the uniform substrate which does not couple

different space harmonics. A matrix IS], characteristic of the substrate

material (Fig. 5), is evaluated in Appendix Ill such that,

18
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for a periodic array of strips.



+= z i. = x,y,z
(m) I ( m , r ) U( n )  PO

nri = - S j 'im C'4 (20b)
n= . m = -,

Since the uniform substrate does not couple different space harmonics, we

have

S(mn) = 0 for m A n (21)
ii

The [Lj and [SJ matrices thus describe the elastic properties of the periodic

layer of strips and the uniform substrate respectively. The [SI matrix repre-

sents an exact analysis of the semi-infinite substrate, while the [L] matrix

is based on a first-order perturbation analysis of strips.

The stresses at the interface are equal and opposite for the sub-

strate and the strips, so that equations (20a) and (20b) are combined to yield,

+n zn i = x'Y Z

S . s(.n) + (0h). (m) U(n) = 0 (22a)

n= - =x I J M = -CO

In matrix form,

[i + (5h).[L] Lu) = (22b)

where [U) is a 3M x 1 column vector and [S] and [L) are 3M x 3M matrices, if

M is the number of space harmonics being considered. The factor 3 arises

because of the three dimensions, x, y, and z.

Equation (22b) is the secular equation for the infinite set of space

harmonic amplitudes. The elements of [S) and [LI are functions of and w so

that in principle, one can solve for the dispersion relation O(W) in any degree

of truncation approximation by setting,

det [SLI = 0 (23a)

where

[SLI = [S] + (5h) [L] (23b)
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In the limit h - 0, the strips vanish and there is no coupling between the

space harmonics. Equation (23a) then becomes det [S] = 0 and this yields

the dispersion curve for surface waves in a substrate with a free surface.

C. Classification of Space Harmonics:

Before we discuss the solutions to equation (23a), it is useful

to give a physical interpretation of the different space harmonics. We

note that,

0 (0) =(24a)

is the wavenumber of the forward propagating surface wave. If 0 is at one

of the stopbands, we may write,

= N . iT/p (24b)

where N is an integer. N = I represents the fundamental stopband, n = 2

represents the second harmonic stopband and so on. We then have from

equation (19),

-N (24c)

so that the space harmonic (-N) represents the backward propagating surface

wave. As may be expected, at the stopbands the forward and backward waves

are coupled together.

Now, the space harmonics with -N < n < 0 have 10(n)1 < 101, and

thus couple to propagating bulk modes that carry power away from the surface.

The space harmonics with n < -N or n 0 0, on the other hand have l0(n) l > 11.

They couple to evanescent modes that store power reactively near the surface.

To summarize:

(1) n = 0 represents the forward wave.

(2) n = -N represents the backward wave.
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(3) -N 4 n 4 0 represents propagating bulk modes that cause energy loss.

(4) n < -N and n > 0 represent evanescent modes that cause energy storage.

This is illustrated in Fig. 6 for N = 3. It will be noted that at the funda-

mental stopband N = I so that there are no space-harmonics in category 3. It

is for this reason, we believe, that bulk power losses are much larger for

resonators operated at the higher harmoincs than for those operated at the

lundamental stopband.

Incident
Evanescent Reverse Propagating Forward Wave Evanescent
Modes Wave Bulk Waves Modes

3 (-5 ) ,3 (-4 ) 0 -N ) 3 (-2 ) ,3 (-1) ( ) , ( - !.( )

-87" -67r -47r -27r o 27r 47r 6 87r-5 --- r"T

Spatial Frequency

Fig. 6. Spatial harmonics excited by an incident wave in a periodic array

at the third harmonic stopband (N = 3).

D. Coupled-Mode Approximation:

In solving Equation (23a) for the secular determinant it is common

to use the coupled-mode approximation near a stopband. At the Nth stopband

the space harmonic amplitudes for n = 0 and n = -N (representing the forward

and backward space harmonics) are he largest and only these two are retained.

We then write,

lL (0,0) SL 0N

det 0 (25)
(-N,O) SL(-N ,-

Here only two space harmonics are retained and the matrix is really 6x6 since

3 dimensions are associated with each space harmonic. Thus SL (0'0 ) SL(0 ,-N)

22



SL( 'NO) adSL(-N -N)

and represent (3x3) matrices, but for clarity these are

written as single terms.

It will be noted that the off-diagonal terms in Equation (25) come

from the periodic strip array. The substrate matrix [S] is zero between

different space harmonics. Thus the off-diagonal terms are all of order

h/X. For example,

SL ( 0 , - N) = (h) . L(0 ,-N) (26)

since

S(O,-N) 0

The dispersion curve can be obtained from Equation (25). Equivalently the

normal-mode theory (12) can be used. Either approach yields the mismatch re-

flection represented by AZ/Z, and the results agree with other computa-

(7,8,9)
tions and with experiment. But this coupled mode approximation does

not predict the "stored energy" effect; there is no shift in the centers

of the stopbands of order (h/X) 2 . At the second-harmonic (N = 2), for equal

strips and gaps it is found that,

L (0 ,-2 ) = L (-2'0 ) = 0 (27)

which means that no stopband is predicted at the second harmonic since for-

ward and backward waves are effectively decoupled in this approximation.

It will be noted that carrying the perturbation to second-order in

the analysis of the strip-array (that is, in calculating the matrix [L]) does

not yield the stored energy effect; there is still no coupling between the

forward and backward waves at the second harmonic.

To summarize, the coupled-mode approximation gives us the AZ/Z in

the transmission line model, but not jB (Fig. 4). Carrying the perturbation

analysis of the strips to higher orders only improves AZ/Z to higher orders.
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E. Beyoiid the Coupled-Mode Approximation:

To obtain the "stored energy" effect one needs to go beyond the

coupled mode approximation. To illustrate the point, let us include one

space-harmonic, n in addition to 0 and -N representing the forward and

backward harmonics. Equation (22b) is written as,

S11(0,O) S11(,N SL (0~nfl (0

L(-N,O) S(-N,-N) L(-N,n)l (-N) =0 (28)

S11(n,O) SL (n,-N) SL (n,n) U (n)

From these equations U ()is eliminated to yield,

L (0,o) SW (0,-N) 1 0
= 0 (29)

L' (-N,O) SL'(-NN)J U (-N)

where

SL(00 SL (0'0 ) - SL (O,n) [SL (n,n)] I SL (n,O) (30a)

SL,(O,-N) SL (0,N) _ SL (0,n) [SL (n,n)] l SL (n,-N) (30b)

SL 0_N') = SL (N,O) - SL (-N,n) [SL (n~n)] l SL (n,O) (30c)

SL(-N,-N) SL L(-N,-N) _ SL (-N,n) [SL (n,n)]-I SL (n,-N) (30d)

Equation (29) is of the same form as obtained from the coupled-mode approxi-

mation but the matrix elements are modified as give by Equations (30). The

dispersion curve is obtained by setting,

S (0,0) 5 1 (0, -N)1

det 0 (31)

but now the effect of the space harmonic n is included by using the

corrected matrix elements SL' instead of Sb.
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It will be noted that the correction terms in Equations (30) are

each of order (h/X)2 since they contain the product of two off-diagonal terms,

each of which is of order h/X as discussed previously. Moreover, at the

second-harmonic stopband SL' (0 ' 2 ) j 0 (though SL 0 '-2) = 0) because of the

extra term in Equation (30b) arising from the additional space harmonic

considered. The dispersion curve now shows a shift in the center of the

stopband (through SL' (0 '0 ) ) and also has a stopband at the second-harmonic

(threugh SL''(02)). These effects are of order (h/X)2 and arise from the

inclusion of the extra space harmonic representing a propagating or an

evanescent mode as discussed previously. The corrections in Equations (30)

are readily generalized to include as many other space-harmonics as desired:

SL '(0 '0 ) = SL(0 '0 ) - Z SL(O 'n ) G(nm) SL(mO) (32a)
n,m

SL '(0 ,-N) = SL(0 ,-N) - Z SL(0 'n ) G(nm) SL(m,-N) (32b)
n,m

and similarly for SL '(NO) and SL'(-N,-N); where,

-i

[GI = [SL] (33)

[SL] being the matrix [SL] with the rows and columns corresponding to 0 and

-N deleted. The summation over n,m can be carried out over as many space-

harmonics as desired and the total "stored energy" effect is thus obtained.

Equation (31) can then be solved, in principle, to obtain the

dispersion curve. Instead we will use the normal mode theory (12 ) to calculate

the phase-shift and the reflection per periodic section. This is simpler to

implement than the direct solution of the secular equation.

F. Normal Mode Approach:

In the secular determinant approach, we determine the appropriate

w for a given so that equation (31) is satisfied. A non-trival solution
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U (o) U (-N) is then obtained that satisfies Equation (29). Using the normal

mode theory the problem is approached differently. To start with we assume

that we have an unperturbed surface wave of amplitude A+ (Fig. 7). This

A+  A+ + L A4

Y
z = -p/2 z= + p/2 KP_1740

Fig. 7. Surface wave scattering from a single strip in a periodic array.

wave is a normal mode of the semi-infinite medium so that w and are re-

lated by,

W = 5Cs  (34)

where cS is the velocity of the surface wave on a free surface. It will be

noted that the dispersion relation (34) is a solution of

det [S] = 0 (35)

rather than a solution of equation (31).

Since this wave is not a normal mode of the periodic structure,

Equation (29) is not satisfied and a residual stress distribution is set up.

If the incident forward propagating normal mode has a particle displacement

(0)
u (u being a vector with three components) then the space harmonics T-

and (-N) of the residual stress are given by,

(0) = -SL'(' 0 ) u (36a)

S -S-l) (NO) u (36b)
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This stress distribution now generates a forward wave of amplitude

+ and a backward wave of amplitude A (Fig. 7). A + is in quadrature to

A + , leading to a phase-shift of the forward wave; the phase-shift, &0, per

periodic section is given by,

AO = tA+/A+  (37a)

and the reflection coefficient, r, per periodic section is given by,

r = 6&-/A +  (37b)

A and r are related to the stress t by the normal mode equations: 
12)

A wp * t(0) (38a)

r = u .t(N) (38b)

4P

a (0) (-N)-N

where P is the power carrier by the normal mode. Using t(0 ) and t
( -N)

a

from Equations (36) and inserting the subscripts running over x,y,z ex-

plicitly (which we dropped earlier for convenience), we have,

z

A= -jp > SL' 0 '0 ) Z (39a)
ij ij

i,j=x

r =-jp \ SL ' ( - N ' O ) z 3b
L ii (39b)

i, j=x

where
Wu u

zij 4P ai (40a)
a

= Wuiu (40b)
j 4 Pa

Knowing A0 and r we can deduce AZ/Z and jB for the transmission line model

(Fig. 4). By cascading the transmission matrices of successive periodic
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sections, we can then obtain the dispersion relation for the overall array.

This normal mode approach gives the same results as the direct solution of

the secular equation for small perturbations, but is easier to implement.

Moreover it yields the equivalent transmission line parameters directly.

We will now separate the first-order and the stored energy effects

in Equations (39) using the expressions for SL' given in Equations (30).

(1) First-order effect:

The first-order effect is obtained from Equations (39) by using

only the first term (SL) for SL' from Equations (30). This is the result

obtained from the coupled mode approximation. In this approximation we have,

z

Ao = -j (Pp) (oh) (0 ,0) Z.. (41a)

i,i=x

z (-N,O)

r =-j (5p) (Oh) L.. Z (41b)

i,j=x

Here we have used SL in place of SL' in Equations (39) and used the fact

that (Equation (22a)),
z z
\ (0,0) \ J (0,0)L i. uj (nh) . / ij u. (42a)

j X j=x

since z
\ (0,) . 0 (42b)
/, ' ij (42b

j~x

u being the particle displacements of a normal mode for the semi-infinite

substrate. In Equation (4]b) we have replaced SL (-N O ) by (Dh) . L (-N O)
ij ij

since S ( -NO) )  0.

EI quations (41) show that the phase-shift and reflection obtained

from the coupled mode approximation is linear in (h/1). Using the expres-
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sions for L.. from Appendix I this is seen to be the same result as in

Reference 9.

(2) Stored energy effect:

The stored energy effect is obtained from Equations (39) by using

the second term for SL' from Equations (30):

= j (p) (h) 2  H ll(OO)S j Zij (43a)

i,j=x

2 H _N,O)

r j (Op) (Oh) 2 I Z (43b)

i,j=x ii

where

Hj nk L n) , L (44a)

ni? L,.= ik (44b)n,m Lx

Here [SLI has been replaced by ($h).[L] since only the matrix elements be-

tween different space harmonics are involved, for which [S] = 0. In Equations

(44) the summation over n,m is carried out over as many space harmonics as

desired.

The [LI matrix describing the layer is calculated assuming that

it is a thin strip uniformly excited across its thickness. This is an invalid

assumption at high spatial harmonics, since the penetration depth at the nth

harmonic is of order - 1/0(n)
. Thus, the matrix element L(m 'n) is overestimated

by a factor (n)h at high values of n. An exact analysis of a finite thickness

strip is rather complicated; a good approximation is to view the strip as a

single-mode lossy transmission line in the direction perpendicular to the

surface. The transmission line is "shorted" (zero stress) at the top and [L]
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represents the "impedance" (stress/displacement) at a distance h from the

load. From transmission line theory the impedance Z depends on h through

the relation,

Z= Z exp((n) h) - exp(5(n) h)
0 exp( (n)h) + exp(- (n)h)

z 0(n)h for 5(n)h << I

where Z is some constant and the decay constant along y is assumed equal0
(n) th

to 5(n) for the n harmonic. The thin strip approximation is valid when

(n) h << I and yields an impedance linear in h. An approximate correction

for L (m 'n ) is obtained by multiplying it with the factor,

1 exp(5(n)h) - exp(- (n)h)

(n) (in) (in)
(nh exp(n h) + exp(-n h)

This correction factor is clearly not precise; however, the end

result is quite insensitive to the precise nature of the correction. This

is because the chief contribution to the stored energy effect comes from the

lower space harmonics which are unaffected by the factor; the higher space

harmonics contribute very little individually. The inclusion of the factor

does serve to eliminate spurious contributions arising from the cumulative

effect of a large number of space harmonics.
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G. Results:

(1) First-order effect (Equations (41)):

Equations (41) give the first-order LO and r as obtained from

the coupled-mode approximation. Using the expressions for . 0 ,0) and L.NO)

from Appendix I and noting that = N.p, A¢ and r can be evaluated in a
p

straightforward manner. The reflection coefficient is equal to nZ/X. for

the transmission line model. The results agree with Reference 9 and the

calculations are not repeated here. For grooved arrays, AT is found to be

zero thus predicting no shift in the stopband center. For electrodes of a

material different from the substrate a non-zero A¢ is obtained, but this

is of order - (h/X) and corresponds to a change in velocity of the wave

under the electrode material equal to that due to a uniform layer of the

electrode material. Thus, this approximation yields a repetitively mis-

matched transmission line model with different velocities in the 4aps and

under the electrodes. The change in wavenumber, AD, under the electrodes

is obtained from A¢ using,

AD=A (45)D p

where 7 is the ratio of the electrode width, a, to the period, p (Fig. 5).

(2) Stored energy effect (Equations (43)):

Equations (43) give the 60 and r due to the stored energy effect.

(i) Phase shift at the fundamental:

The phase-shift at the fundamental was calculated for aluminum

electrodes on quartz. We compared our results to the experimental data provided

to us by Rome Air Development Center for a double electrode transducer on ST-X

quartz. The electrodes were made of 80 X of chromium and 820 X of aluminum.
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The line width was 1.1729pzn corresponding to a fundamental wavelength of

9.3832 M. The fundamental frequency of a double electrode transducer is at

half the frequency of the first mechanical stopband. We calculated the

change in velocity of the surface wave in propagating under the electrodes.

The results are shown in Table I. The piezoelectric effects on ST-X quartz

are smaller (K 2/2 = .00055) and have been neglected. It is seen that a

Table I: Aviv for adouble electrode transducer on ST-X quartz.

Calculated Measured

ist
I order Stored Energy Total

.00065 .00385 .0045 .0048

major part of the lowering of velocity is due to the stored energy effect

rather than the linear first-order effect.

Figure 8 shows the results for grooves in ST-X quartz with KV

given by,

A = (Op) . K . (h/X)2  (46)

Thc experimental points are taken from Reference 13 and show fair agreement.

It was pointed out to the author by Melngailis that the large scatter in

the experimental data could possibly be due to varying groove shapes; the

present analysis assumes a rectangular shape tho,,gh other shapes can be

accounted [or by a modification in IL].

The phase-shift for grooves in Y-Z lithium niobate was calculated

to be 25(h/) 2 at h/X .01. This is in agreement with the measured results

in Reference 14.
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Fig. 8. K vvs h/X for grooves in ST-X quartz. Experimental points are

taken from Reference 13.
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(ii) Reflection at the second harmonic:

The reflection per strip at the second harmonic for grooves in

Y-Z lithium niobate was found to be 22(h/X) 2 at h/X .01 which is about

half of the measured value in Reference 6. The reason for this discrepancy

is not clear to us.

The reflection coefficient, r per strip was calculateI at the

second-harmonic stopband for aluminum electrodes on ST-X quartz and for

grooves in ST-X quartz. The results are shown in Fig. 9 where KR is

50

40

30 (

20

SI I
10 0.005 0.01 0.015 0.02

h/ X

Fig. 9. KR vs h/X at the second harmonic for,

(a) Grooves in ST-cut quartz

(b) Aluminum electrodes on ST-cut quartz.
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given by,

r = KR. (h/X)2  (47)

This result has not been compared to experimental data.

H. Sumary:

A theoretical model for surface wave propagation in a periodic

array of thin strip overlays has been developed. The "stored energy" effect

is modeled by extending the analysis beyond the coupled mode approximation.

The results are discussed for aluminum electrodes and grooves in ST-X quartz

and Y-Z lithium niobate.
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4. PLEZOELECTRIC SCATTERING:

A. Introduction-

The propagation of surface waves in an infinite periodic array

of thin conducting strips has previously been analysed (51); and an equi-

valient "mixed circuit" model has been obtained 19  by matching dispersion

relations near the stop-band. In this section we adopt a different approach

that leads directly to the scatter matrix of a single strip in a periodic

environment. We assume (Fig. 10) that an unperturbed surface wave is inci-

dent on a strip within a periodic array. The incident wave has a surface

potential 0 given by,

O= 0 + - O (48)

where 0 is the wavenumber of the unperturbed wave. The charge induced in

the strip by this surface potential is determined from the electrostatic

equations. This charge is then used as the source term in the normal mode

equations (20) to determine the change in the incident wave, AO+ and the gener-

ated reverse wave, AO . The scatter matrix describing a strip in a periodic

array is thus obtained. Finite arrays (neglecting and effects) are then

readily analyzed by cascading the transmission matrices of successive strips.

Since the formulation is on a strip by strip basis, assuming local periodicity,

slow variations in periodicity and metallization ratio may be accounted for.

The advantages of this approach are:

(1) The scatter matrix of each strip is determined directly

at all frequencies so that the model is valid outside

the stopbands as well.

(2) Analytical expressions are obtained for each scatter

matrix element as a function of metallization ratio

and frequency.
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(3) The analysis can also be extended to include bulk wave

generation by using the charge induced on the strips as

the source term in the normal mode equations for the bulk

waves.

The formulation presented ,,ere is directly applicable to periodic

arrays that are electrically periodic as well. This includes open- and

short-circuited reflector arrays and multistrip couplers. An extension of

the analysis to transducers with the electrodes arbitrarily interconnected

is being developed.

VI ZI Z4

E y

Fig. 10. Reflection and transmission of surface acoustic waves at an

electrode in a periodic array.
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B. Charge It~stribution induced in a Periodic Array by a Propagating

Surface Wave:

In this section we will determine the Fourier components of the

induced electrostatic field in a periodic array due to an incident surface

wave. For convenience dimensionless variables s , s' and 0 are introduced.

0 = 2Tz (49a)
p

s kp (49b)
2Tr

s , = p  (49c)2TT

where, is the wavenumber of the surface wave

and 5 = k + N. 21T/p,

N being a positive integer such that 0 < k < 2v/p. It follows

that,

s = s + N (49d)

where 0 < s < 1.

The surface potential due to the unperturbed wave is given by

Os = 0+ e - j (s+N) (50a)

In the presence of the periodic array of conducting strips an additional

electrostatic field is generated. This field is periodic in z and its

surface potential b e is written in a Fourier series as,

= -j (S+N) (50b)

The total surface potential is the sum of the wave potential and the

induced electrostatic potential.

0(0) =0 e-j(s+N) + e -j(s+n) (51)
+ n n

38



The tangential electric field, Ez at the surface is obtained from U'1)

jZ( JS (s N) + j N e
) jIMe- se -jn 8
(e)= j e s +N) j (s+n)¢ n e , 52a)

The electrostatic part of the field also gives rise to a normal electrical displace-

ment, D at the surface (oracharge distribution) that is written from Laplace's equation.Y

Dy(8) = 2v (Ep+ E )ei [ \ S(s+-n)n e -n (52b)
n= -cc

where, S = sign of (S+N)
n

= +i for n>O0

= -1 for n < 0

since 0 < s < 1.

and Ep is the effective permittivity of the substrate and E is the permit-

tivity of the medium above the substrate.

The Fourier coefficients 0 have to be determined such that the

boundary conditions imposed by the array are satisfied (Figurell):

E (B) = 0 161 < A (53a)

D () = 0 A < 1[1 <- (53b)

where A = ji

1' being the metallisation ratio.

These conditions are written from Equation (52a) and (52b) as,

e + A e-  =0 lel < A (54a)

S An e jn= 0 A < 'n r (54b)

where, A (s+n) n  (54c)
n
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Fig. 11. Same as Figure 10 with dimensionless variables.
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It is shown in Appendix IV using the properties of the Legendre polynomial

that conditions (54a)and (54b) are satisfied if we write,

N

A o- fS P (COSA) + ofI S P n(cOsA) (55)

where a is any arbitrary number and a0 to oN are determined from

the following equations:
I

- (56a)

o= -/ P (COSA,) , 1=1 to N (56b)

Here P represents the nth Legendre polynomial and P for negative n isn n

obtained from the relation Pn-1 = P " The charge distribution in the-nI n

array is written from Equations (52) and (55),

N+l
T() = (E + E ) e-j .(s+N)O F = jn(e L~ P nmNl(cosA)e

ML0 n=-

(57)

The terminal voltage and current at the strip are shown in Appendix V to be,

N+l N-ml Tr P (-COSA)

V = (s +N)+ (-I) o N-ms (58a)+m s i n~s

N+l

I= jW(Ep+ Eo) W (s +N)+ m0ctm . 2Tr PN (COSA) (58b)

where W is the length of a strip perpendicular to the direction of wave

propagation. ao to oN are uniquely known from Equations (56a) and (56b)
0 N

has to be chosen so that the correct ratio V/I = Z is obtained from

Equations (58a) and (58b)

It is convenient to divide 0N4l into two parts:

V

l N+l + N+l
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where )- .is chosen such that the strip voltage is zero. This rres>vnds

to the case when all the strips are shorted :ogether. From equa:-_on (5ba,

7 N-m -PN (cosA)
o) (-1) m (60)P (-co.).

-
-

V Is also obtained from Equation (58a):

V Vs inrs

[lort t (I o I (:r i(:(il

V

!~~ ~~~~o I -.... I [ I

Pof I I
(' /' L )c iS"-, ~ (Acoust ic.)

0=-7r O= .

Fig. 12. Scattering at an electrode in a periodic array.
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C. Evaluation of Scatter Matrix for a Single Strip:

in this section we will use the induced electrostatic field de-

rived in equations (56)through (61) to obtain the scatter matrix of a single

itrip. To start with we define a (3x3) matrix A that relates the fields at

the cwo acoustic and one electrical ports (Fig. 12). All values are refer-

enced to the center of the electrode.

A2 A, A (62a)
-A 2 1  .1 3

,31 A32 A33

The (Zx2) sca:er matrix, S relating the two acoustic ports is easily obtained

from :he A-matrix by setting

1 V/Z (62b)

where Z is the external load at each strip. Using equation (62b) in equation

(62a) we get,

1y L ) (63)" " L S 1  '22

where,
1I3 A31

S.. = A - 13 (64a)
SA 3 3 -

" Z

A 1 A 3 2'

S2 = A A 13 A 32 (64b)
.2 12 A - /"

33

A, 3 A3 1.33

A X
23 '3 

(64d)

A33



We will now evaluate the elements of the A-matrix. The induced

electrostatic field was derived in the last section assuming an incident wave

only from the left; that is, T was set equal to zero. We will thus evaluate

the A-matrix elements in the first and third columns (Equation (62a)). The

elements in the second column are written from the symmetry of the acoustic

ports:

A12 = A21

_ = A (65)

Ao = Al

A32 A A3

Using equations (58b), (59), (60) and(61) the terminal current, I

is written as the sum of two parts--one proportional to + and the other pro-

portional to V. Comparing with equation (62a) , we obtain A31 and A3 3 .

N (-l) N-Psl (COsA) PN (-Cos!)_

31C jw(E D- E )W.2rr(s+N) m P N (cosA) P Ap 0-m~ PsI(-cosA)

(66)

Ps (cosA)

A33 2j(E+ Eo)W.sinrs Psl (CosA) (67)

A 31 represents the strip current with V = 0, that is with the array shorted

while A 33 V represents the strip current due to a voltage V with no incident

wave . It will be noted that since the fields were assumed periodic, a

voltage V means that the voltage at each strip has the same magnitude V but

is delayed in phase with respect to the previous one by 2srr.
Our next step is to evaluate All AI3' A21 and A 23 This is done

by using the induced charge distribution D y(9) obtained in the previous section

(Equation (57)to determine the change in the forward wave, AT and the gener-

ated reverse wave, A from the normal mode equations:
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d 0 2-1 + I " e ( s a (68a)

do -j (s+ N) a
D e (8b)

d a 2TT p+ V

integrating over one period frorM -TT to +Tr and assuming z constant over

the period,

T+= (S+N)'2 ,d n - osA) e - (n-N)a

tv j n-rn-N-I

= j 2-(s +x) M ?M-
1 (cos .) (69a)

since I -TT de e-(n- 2n if n-N
-Tr =0 otherwise

v T 2nsm- - n¢ ° N) aj A ( +1 o f d'2PaM)I~

V .2iT(s+N) -a ?2) (cs ) (69b)

dne d ? (cos)eJ( 2s+ n +N) 9

since d r-n-- 2if. P 2 2  COS L)= . (cos -m
Tr n=-

as shown in Appendix VI. Using Equations (59), (60) and (61) to replace

12 - i in equations (69a) and (fb), & and 10 are written as the sum Of

two parts--one proportional to t and the other proportional to V. This

7ields the desired A-matrix elenents.

45



N = N-rnr~*.')

-m P (-cos.!) P (cosA)
NN+2s-l

? (COSA) +
m '2N+2s-m p (-cosA)

s-i
(70a)

A Av1 2sin s ?N+2s(cos)A 13 = j __,(70b)

13 V Ps (-COS 'l)

I AV

N-Ms
,u -(COS() +- (700)

m _:n-I" PI ? (-cos) -
S-1.

v 2sinTrs PN(COS) 
(70d)

The matrix elements derived earlier are reproduced here for convenience:

Al j~( ,. W./. 2 tS-N).

31 L
N m ( ) i -(cos .) P (-cosA')-

7 s-I N-m-,-s(7ea, p 'COSA) 2 (70e)

n-- m JN-rn-s Ps-cos& -

2 (COSA)

A3 3= 2jw(E+ E0 W sis P (COS) (70f)

A2 = A (70g)

L A , (70h)

A 3 A 3 1 (70)

46



47

Equations (70) give the complete scatter matrix for a strip in a periodic

array once the a'S are determined from Equation (56). A few of the CI'S arem m

calculated here for convenience.

1 (71a)

a( ='cosA (71b)

a2  (Co1 2 (71c)

13

1 (cos 3A -cosA) (71d)

Equations (64) are used to obtain the scatter matrix of a single strip for

a given load termination Z, from the A-matrix derived above.

D. Examples:

We now have analytical expressions for the scatter matrix elements

for all frequencies and metallization ratios. In Ref. 19 the reflection

coefficient (SII) per strip was computed at various stopbands for cDen- and

short-circuited arrays. In this section we will compare our results with

Ref. 19 at the fundamental and second harmonic stopbands.

(a) Fundamental stop-band: (s = .5, N = 0)

At the fundamental stop-band s = .5, N = 0. Using a0  - 1/2 from

Equation (71a) in Equations (70) we get the relevant A-matrix elements:

I I  - P 5(-cos,,)

A11 = _ osA p 5 (cosA) (72a)

A = 2j (72b)
13 v P_ 5(-cosA)

A P. 5 (cosA)P 5 (-cosA)-
A31 =-jW(E+ E)W.! .(cosA) 5 (cos) j 72c)

P (cosA)
A 2jw(E + E 1W (72d)
33 p 0 P_ 5 (-cosA)

47



48

Here, the Legendre polynomials Pl(COSA) - cosA and P0 (cosA) = I have been

used. From Equations (64) we now write the reflection coefficient for the

open- and short-circuited array by setting Z=- and Z=O respectively.

Sl =A A 13 A31
11 A._

= j I [(-cOsA) + P. 5 (cosL) (73a)

P5(cosA)1
S I

I= A 11

I n- P.5(-cosA)-

= -j ICOSA + P* 5(COSA) (73b)

Equations (73) provide the reflection coefficient of an open- and short-

circuited array at the fundamental stop-band as a function of metallization

ratio. These agree with the plots in Ref. 19

(b) Second Harmonic stop-band: (s=l, N=0)

For the second harmonic stop-band we may use s=O, N=l or

s=l, 1=0; either choice yields the same result. in this case A! = 0 so that

3l! is independent of the load Z which is expected intuitively. We have for

the second harmonic stop-band,

%II = All

I I (74)
,AVT~ 2

= JK:sin 1,

for all Z.
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E. Summary:

The scatter matrix of a single strip in a periodic array has been

derived analytically for all frequencies and metallization ratios. Analytical

expressions for the reflection coefficient of a strip in an open- and in a

short-circuited array at the fundamental and second harmonic stop-bands are

derived as special cases of the general results.
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5. ELEMENT FACTOR FOR PERIODIC TRANSDUCER:

A. Introduction:

A large number of practical transducers are modeled as a periodic

array of metallic strips with arbitrary impressed voltages. It has been

shown( 2 1 ,22) that the response of such periodic transducer is written as the

product of an "element factor" and an "array factor". The element factor

was obtained in Ref. 21 using the numerical tables of Ref. 23 which take the

effects of two neighboring electrodes into account. In this paper analytical

expressions for the element factor are obtained for all frequencies and

metallization ratios with the effects of all neighboring electrodes accounted

for. The response of the periodic transducer (neglecting regeneration and

reflection) is thus obtained analytically for all frequencies.

We first consider a phased array transducer (Fig. 13) in which the

voltages on all the electrodes have the same magnitude V but the phase

Vej 2 kop Ve j kop V Ve-jkop Ve-J2 kop

Fig. 13. A phased array transducer with a uniform phase progression of

k p per period.

progresses uniformnly along; the array at the rate of k p per period where

thp is the period. The voltage on the n elertrode, V is written as,
' n

V V exp(-jnk p)

n a

= V exp(-jn2nrs ) (75)
" 0

KP570
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where s is a dimensionless variable related to k by,

s = kop/2n (76)

It will be noticed from Equation (75) that adding any integer to s yields0

the same electrode voltages so that we may without loss of generality

restrict the values of s such that
0

0 < s <1 (77)
0

The charge distribution in this transducer is known to be
(24 )

2V sinrs im -(s+ n)0
Q() -- (Ep+ E) ( SA) Pn(coSA) e

= n=
0-
0 (78)

where (1) 6 is a dimensionless variable related to z by

e = 2Wz

p

(2) E is the effective permittivity of the substrate and Ep 0

is the permittivity of the medium above the surface,

(3) A = T

T being the metallization ratio and

(4) P is the Legendre function of order v (integer or non-integer).

From Equation (78) we note that the Fourier transform Q(s) of Q(9) has delta

function components at all s given by s = s + n, n being an integer.

Q(s) Q(so) n (cosL) (79a)

where s = s + n

- 2Vsinurs
and Q(So) = -(E +) 0o7%

Here s is the usual spatial harmonic k scaled by p/27 to make it dimen-

sionless. Fig. 14 shows a plot of Q(s) against s for the phased array

transducer with electrode voltages given by (75).
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a(s)
0(so)

2V sin 7"S0
Pso-1 (-COSA)

P-3 (cosA) P-(cosA) I (C os A)tt P3 (cos ,' ).. P2(COSA) P3s P2 (COS - -

-3 -2 -1 0 So 1 2 3

Fig. 14. Fourier transform of charge distribution for a phased array

transducer.

The electrode current at each strip has the same magnitude but

with a phase progression along the array. The current, D at the nth
n

strip is written as

Dn = D exp(-js o2Tn) (80a)

where: D0 is obtained by integrating jw Q(e) over the width of a strip0

f)= juWW d& Q(9) S-1(OAPs -(cosA)

- jwW (E + Eo) . 2V sin"rs (80b)P o o Ps -,(-cOsA)

0

w is the length of a strip in the direction perpendicular to the

wavo propagation.

,Now, we wish to determine the charge distribution in a single

Lap transducer (Fig. 15) since this yields the element factor. (21,22) it is

easily seen that this is obtained by superposing the charge distributions

in an infinite numhtr of phased array transducers each with V = 1, but with

virvi ng uniformly from 0 il 1. The voltage on the n electrode is then

lhl <Li nrl' from KEquation (75) as,
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1V

I Do

KP- 1700

Fig. 15. Electrode currents in a single tap transducer.

I

V= ds exp(-jn2ros )

0

= 1 forn= 0

= 0 for n 0

which clearly describes the single tap structure in Fig. 15.

Hence the Fourier transform of the charge distribution in a

single tap structure is a continuous function of s given by,

2(E + E) sinus

a(s,t ) - p P 0 n (COSA) (81
p 1-(-cos6) n

0

where s = s + n
0

< 1 and n is an integer. Fig. 16 shows s1/2
such that 0 < so a (s,A)

plotted against 2s, for different values of the metallization ratio. These

agree reasonably with the numerical plots in Fig. 15 of Ref. 21 where 2s

corresponds to f/f . The discrepancies are possible because only two near-0

est neighbors were accounted for in the numerical method.

The capacitance of periodic transducers was obtained in Ref. 21 in

terms of the electrode currents, Dn (Fig. 15) in the single tap transducer.

These are readily obtained from Equation (80) by integrating over s from
o

0 to i.

2 i= UW ilTT', P ! (cosA jn2T s (82)
n . !' (ci ~s\) ds
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20 17-03

05 --

201

S0

10

05

0

20

05

0 2 24

Fig. 16. Element factor for different metallization ratios.

54



In general the integral has to be obtained numerically. Bnt for .5,

cosA = 0; so that PS -1(cOsA) 11P S (-csA). Dn is then obtained analyti-
0 0

cally as,

4
Do = jWW (E + Eo ) - (83a)

0p o Tr

D
0 (83b)

n I - 4n2

It is seen that while D is positive, all other D 's are negative as expected.O nl

It may be shown that, as expected, the sum of all the electrode currents is

zero. M

D = 0Z_ n

B. Summary:

In Ref. 21 the conductance and capacitance of a periodic transducer

with arbitrary voltages were related to the charge distribution and the elec-

trode currents in a single tap transducer. However, these quantities were

obtained from numerical tables that take only two nearest neighbors into

account. In this section the charge distribution and the electrode currents

in a single tap transducer are obtained analytically considering the effects

of all the nearest neighbors, making the analysis more accurate and more

convenient. The overall charge distribution in a periodic transducer is

given by Equation (5) of Ref. 21 as the product (in k-space) or the convo-

lution (in x-space) of the voltage distribution and basic charge distribution

function (BCDF); the BCDF is now known exactly from Equation (81).
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APPENDIX I: DELTERv and DEITERZ trom Scattering J'araL. trs:

In this report the scat ering parametetrs hav, be ti dcri wd Ii,,r a

single section in an infinite array. I n this append Lx, the impedanCt- inis-

match AZ and the fractional change in ve loci ty Av/v for an Cluivt lent tr;tns-

mission model are derived for the S-parameters.

Let L be the radian frequency, v the unperturbed surface w;ave
0

velocity, I the length of one section and , the metallization ratio. In th,-

equivalent transmission line model, the metallized sections have an impedance

and velocity different from the unmetallized sections (Fig. Al). In addi tion,

two susceptances jB are included at the edges Ot the metallized section in

order to account for the even harmonic reflection which is not predicted by

the simple mismatched transmission line model.

A straightforward analysis shows that,

Si  = j[AZ sinO - B cosr718 (Ala)

S2eJ = I- y1(A Avb,
12 v

where e = wj/v and A7., B are normalized to the characteristic imped-0

ance. Using these equations &A. and Av/v are calculated Irom S and S It
11 ~12'

will be noted that at the fundamental with .5, cos7[0 = 0; so that B does

not enter the picture. On the other hand, at- the second harmonic sinT,8 (=

so that 61. does not enter the picture. At intermediate frequencies or for

" other than .5 there is no unique solution lor MZ and B; however, it is

possible that a particular choice might result in values that are nearly

constant with , or with frequency.

gv AZ (1)
DELTERV and 1) E 1,TERZ are obtained t -om- and from the relations:

v Z

DELTERV K + AV (Ale)

2 v
2Al

f)D'IT R/ - ---- - -v (A.\ d'

Al1



vo + Z v

&wiP/v 0
i 7 MetaIlization Ratio
w Radian Frequeny
Vo= Unperturbed Surface

Wave Velocity
KP- 1853

i-. .\ . I'luivaletn transmission line model.

f(z)

1 z

~. \ 'uct io describing~ geometry of the strips.z



APPENDIX 1I:

In this appendix we will evaluate the stress-displacment relation

for a thin periodic array of strips. Let us first consider a particle dis-

placement vector with a single spatial frequency (

U,. U (n )  expl-j (n ]Z (A2a)
IL 1

where B(n) = + n . 2TT/p

If the thin layer were uniform rather than periodic the stresses . would also

(n)
have the same spatial frequency ( . The relation between : and U can then

be expressed by a constant matrix [A ( n ) I such that

(n) z (n) (n)T. = Z .. U i , yz(A2b)
j =x 13 -

(n) (6)
The matrix elements A., are known from a first-order perturbation analysis.

( n )  (n) (n) h)a'- 2 (n) 21 (3a)

A(n) = [(n) ((n)h) Ab
A p'(''h) at' (A3b)

XZ XZ

A(n) = _(n) (n) 1 ) C, (A3c)zx zx1

A(n) =(n) ( (n)h) toe' - pw 2/P(n), 2 ] (A3d)ZZ ZZ

A(n) = (n) ((nl) h) 2/,,(n)}2] (A3e
Ayyh) W(3

(in)
and the other A.. are zero, where p' is the mass-density of the strip material,lv]

and c'Xx , " , x ac' have the dimensions of stiffness and are given by,

Ca' S 3/D (A4a)
Xx 3

a' 3 5/) (A4b)

A ;



cx $3/1) (A4c)

' S/ (A4d)
z z 5

l (5' S' -S' 5' )/S' (A4e)
Is,',, s,.s, 11 /S ii

s S, - S S' (A4f)

[S,' is the compliance tensor of the strip material.

Now if the array of strips is periodic, it has been shown
(3'4 )

that Lhe stress may be written in terms of the particle displacements as,

z (n) (n) (
-.(z) r- B.. (z) i - x, y, (A5)

j=x

where

(n) (in) (n) ,df
1 n  (z) = A f(z) -j (5 h) -' (A6a)
xx xx xx dz

B (n ) (z) j((n)h) ' df(A6b)
xz zx dz

1, (z) = j ((n)h) ot' df (A6c)
zx zx dz

(n1) (z) - A(n) (z) (n)h) at' df (Abd)

zz zz zz dz

B( n )  (z) - A ( n )  f(z) (Abe)
yy yy

(in)
andl the other Bj are zero. Here f(z) is a rectangular function describing

the geometry of the strips and is shown in Fig. A2 . The terms involving df

in E Iuations (AO) represent delta functions at the edges of the strip; the

physical origin of these delta functions has been explained in References

I and 4. Multiplying [quation (A4) by ej (m)z, integrating over one period

and nsing text Equations (Ib) and 3a) we have,

A4



+p/2

(5h) . L(nm) - I B( n ) (z) explj ( M ) - ) 'J dz (Al)ij p 'j ij
-p/2

(n) (n ,m)
Using B.. (z) from Equations (A6), we get L I nUsngBj' ij

L(nm) = -P + c' (1 + m + n ,2AFa

xx s xx 01)( O m-n (Aa)

L(n,m) = &' (1 + n'2T)(0 + (n-m).---) f (A8b)xz xz p Op fm-n

L (nm) = 5 of'z ( + -)( + (n-m).2) f (A8c)zx zx Op Op rn-n(A)
(m)= i [_,c2 + ' m.2T) n.-2rT)

L(n 'm) ,2 + (I + m (I + n F (A8d)
zz s zz Op p -n

L(n,m) = 0 [-P'c 2  F (A8e)yy s m-n

Where,

+p/2

F = i f(z) exp[j (0(M) - 0(n))z] dz
m-n P -p/2

sin (m - n) ifl-] (m-n t(A8f)

(mn - n) Trfl

T is the duty factor = a/p, 0 is the surface wave wavenumber and c is
S

the surface wave velocity. The other L(nm) are zero.ii

APPENDIX III:

In this appendix we will evaluate the stress-displacement relation

for a semi-infinite substrate. As discussed in the paper, the substrate

does not introduce any coupling between different spatial harmonics (Equation

(5) of the text).

Let us consider a particle displacement vector with a single spatial

frequency (n) = $ + n.2w/p. If we assume that the particle displacements

decay into the bulk from their surface values given by (A9) as an exponential

A5



-Yy then from the field equations we get three values of o. These

correspond to three elastic modes of the solid. The field equation is

written as,

2 p 2u. (A9)

j,k,L I j a

where, C is the stiffness tensor and p, the mass density of the substrate.

The coordinates xi, x2, x3 are used in place of x, y, z for convenience. If

we replace the derivative operators by,

- 0

a/ax 2 - Ct

x -j(n

E 1quation (A9) becomes an algebraic equation. The determinant is a sixth

order polynomial in a, so that by setting it equal to zero we get six values

of a of these three represent exponentially growing solutions and are re-

jecLed. Corresponding to each of the other three (), a (2), (3) we get

particle displacement vectors whose surface values are (u (u })j and

u (  The total particle displacement (Uj at the surface is a linear

combination of these.

LrU lul . (A} (AlO)

where, lul is the matrix formed by arranging uu(')), 3u(2)I, and (u ( 3 ) I in

columns. (Al is a vector whose components AV A29 A3 are constants repre-

senting the linear combination.

Now corresponding to each solution Lu( 1 )j, Lu(l 2 ), (u(3)1, we may

calculate the stress vector at the surface LT(1) (T(2) (T(3) the

A6



total stress, T is written as a linear combination of these.

(r) = [T) (A] (All)

Combining (AIO) and (All),

(TJ = iT] [ul - 1 (U] (A12)

comparing with text Equation (3b).

[SI = IT] [u -1  (A13)

The procedure outlined here may be used for any anisotropic substrate to

obtain the matrix [S (n 'n ) I relating the stress and displacement at a given

(n)spatial frequency (n
. For an isotropic substrate it is possible to obtain

analytical expressions for the matrix elements. The three values of o are

obtained as,

a( I ) (n) 2 k 2 ) 1/2= ( = _ )(Al4a)

(2) (n) 2 2( 1/2c = os= _k(AI4D)

(3) (n) 2 2 1/2C1 = fs= _ k S  (Al4c)

where,

kL 2W (Al5a)

2 p (kl5b)
S P

where X and are the Lame' constants of the substrate. The matrix 1u] is

given by,

A7



ful1

5 Of)(1 (A16)

I(2) jn
Trhe [TI matrix is obtained as,

0 (n t 2 2 (5(n) ~2 k (Al7)

2L 2(n)12 - k 2. (n)of(3) J
From (A16) and (Al7) we get the [SI-matrix.

(n, Li)
S (A l8a)

(n n) S S lb
S 'y W1-4,11(lb

y2 FnO 2n 2 2

S n) .(n) + 2 -
2 L~S (Al8c)

yz (n) 1

(n, ~ n) -nn

Sn,) -S (Al8d)
zy yz

2

(n ~ (n ON

The other S..~n are zero. For an arbitrary anisotropic substrate analytical
i-]

expressions are not obtainable, hut the matrix elements are numerically

evaluated for a given 0 (n using the procedure outlined above.
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APPENDIX IV:

In this appendix the values of a are derived so as to satisfy

equations (7) and (8):

N+I

-jN Snon+m-N-l(Cos&)e-jnO 0 101 < A (A]9)

M = n=

N+l

im Pn+m-N-I(cosA)e -0 A < 101 < nn -co

(A20)

It is known from the properties of the Legendre polynomial that 1,

SnimPn-m(cosA)e - j n
= 0 181 < A (A21)

n
= 

co

P 0 A < 161 <TT

n= -= co(A22)

where m is any integer. From (A4) it is seen that (A2) is satisfied for

any choice of a's.
m

In order to satisfy (Al) we choose a's such that,
m

e-JN1 +M4a £M Snn+m-,- (cosA)e - j nG

n
= 

- CO

= m--ca m Sn+m-N-IPn+m-N- (cos&)e-JnB (A23)

From equation (A3) we note that the right hand side is 0 for 161 < A.

Equation (A5) yields,

N+1e-JNe \

e + fm 5= 0 1j1 < A (A24)

where,

m / S n - P (cosL%)e-Jn G

= _ \S n Sn-(N+l-m)) Pn+m-N-
n= -_

A9



=0 it in N + 1

N-m

2 \ (cosA)e - n 0  if m<N-

n '0 -m-N-N

Since + 0 it is apparent from Equation (A6) that aN can have any

arbiLtrary value. Leaving this term out,

N N-m
-jNe n2-N a 2 (ote n = 02cD Pn -'(C°S A)e-Jn

M=- n+m-N-l

N N-n

i.e. e -jN 12 e - amP n + m - N -
1 (cs) = 0

(-j 9 -N
Equation each po.: -r (e ) to 0 starting from e we get,

= - 1/2 (A25)

2

.--amP mL11(coS) = 0, 1 1 to N (A26)

Equation (A7) is written as,
2-i

= -P -(cosA), 2 = I to N (A27)

noting that P (cosL) I and PM-1= 1

API'ENI)IX V:

In this appendix the terminal voltage and current at a strip are

determined from the tangential electric field and the normal electrical dis-

placement. From Equations (5a), (7c) and (8),

N+l
E () = ( +N + - i s e 7 a jNe +mD ' n = - SnPn _~ ( c O s A ) e - j n e -_

j-( (s±N)t~ I +>

.2j- (s-iN) . -1 P --m-N- (s-I-n) 6 (A28)
p + m . n+m-N n

mnt n=

A1 0



All

where Equation (A5) has been used.

Integrating (A9),

= ( Sn+m-N- 1nimN- (C°SA) eJ j(s+N)o¢()=(s+N)¢+ e
+tJ m s+nnl= -CP

Since the potential is uniform over a strip, the strip voltage V is

equal to 0(0). N+
I \ S n+rn- N- IP n+m- N- 1 (c 0s A)

V = (s+N)+ 0 Zam s+n
M= - n

= 
- M

N+l lN-m(C

= (s+N)+ 0 • (-1) s N-ms (-CsA) (A29)
s inris(29

using the derivation in Ref. 7. The strip current is obtained by integrating

Dy () over one strip width. From Equation (10),

N+ 1 +
j (E+ )(.+)t a1 CLe- j(s+n)6

p 0 + ,' j L -n-N-i
ja(E+ o)S+)¢m= m  -_An=_=

N+I

= jw(Ep+ E)(sIN)¢+  a . 21 P (COSA) (A30)
p 0O L-,,,m N-n-ism=U

again using tfhe result in Ref. 7.

APPENDIX V1:

In this appendix the following integral used in Equation (20)

is computed:

J = dO . P n (cosA)e-j( 2 s+n+N)e
Sn-i-r-N-1'- 11 n= - =

We have, J = P (COSA). 2sin r1 (2s+n+N)
L hn+m-N-I c  (2s-n-+N)

All



=2 sin 2sn c _In+2N-ml Pn (COSA)

n-O 2s+n+2N-rn+

2sin 2sTr ( -l) nNm-- \ n CS~ I
L= n n+2s+2N-m±1 2N- 2s-n-mj

2N-m T
=2Amn 2srr (-1 P 2 (COSA). sn~2+sm

using the definition of Legendre functions P for non-integer y.
'1

This yields,

J =2Tr P N2- (COSA) (A31)
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ERRATA

8 April 1981

RADC-TR-81-4, Termination of Surface Acoustic Wave Velocity and
Impedance Differences Between Metal Strips and Free Surface Regions
of Metallic Gratings
February 1981

The title of above RADC TR should be corrected to read:

Research to Provide a Theoretical Determination of Surface Acoustic
Wave Velocity and Impedance Differences Between Metal Strips and
Free Surface Regions of Metallic Gratings.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, New York 13441
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